Combined Science Higher Past Paper Practice

5.4 Chemical Changes

5.4.1 Reactions of Acids				
Demand	Question	Page Number	Mark Scheme	
Low	1	2	50	
LOW	5	15	54	
Standard	7	21	57	
Standard	10	27	61	
13		34	65	
High	18	47	73	

5.4.2 Reactions of Metals				
Demand	Question	Page Number	Mark Scheme	
	2	5	51	
Low	3	9	52	
	4	12	53	
Standard	9	25	59	
Standard 12		33	64	
15		39	67	
High	17	45	71	

5.4.3 Electrolysis				
Demand	Question	Page Number	Mark Scheme	
Low	3	9	52	
	6	18	55	
Standard	8	23	58	
	11	30	63	
14		36	66	
High	16	42	69	

Г

Q1.

This question is about acids and bases.

(a) What is the pH of sulfuric acid?

Tick (\checkmark) **one** box.

1	7	14	

(1)

(1)

(b) An acid reacts with zinc to produce zinc chloride and hydrogen.

Which acid reacts with zinc to produce zinc chloride?

Tick (\checkmark) **one** box.

Hydrochloric acid	
Nitric acid	
Sulfuric acid	

(c) What type of substance is zinc chloride?

Tick (\checkmark) **one** box.

(d)

Alkali Bas	e	Salt	
			(1)
An alkali is a base in solution.			
Which compound is an alkali?			
Tick (√) one box.			
Sodium hydroxide			
Sodium nitrate			
Sodium sulfate			
			(1)

(e) The formula of the copper ion is Cu²⁺

The formula of the oxide ion is O2-

What is the formula of copper oxide?

Tick (\checkmark) one box.

A student reacts an acid with copper oxide.

- (f) The reaction between the acid and copper oxide is very slow at room temperature.How could the student speed up the reaction?
- (g) Complete the sentence to show how the student makes sure that **all** the acid reacts.

Choose the answer from the box.

in excess	in solution	molten	soluble

The student adds copper oxide to the acid until the

copper oxide is _____.

(h) The student filters the unreacted copper oxide from the solution.

Which apparatus does the student use?

Tick (\checkmark) one box.

(1)

(1)

(i) What process is used to produce crystals of a salt from a salt solution?

(1) (Total 9 marks)

Q2.

A student investigated the temperature change when metal ${\bf X}$ was added to copper sulfate solution.

This is the method used.

- 1. Add 25 cm³ of copper sulfate solution to a beaker.
- 2. Measure the temperature of the copper sulfate solution.
- 3. Add 1.0 g of metal **X** and stir.
- 4. Measure the highest temperature reached when metal **X** is added to copper sulfate solution.
- 5. Repeat steps 1 to 4 with different metals.

Figure 1 shows the apparatus used.

Figure 2 shows the thermometer reading of the copper sulfate solution at the start of the investigation.

Figure 2

(a) The highest temperature reached when metal ${\bf X}$ was added to copper sulfate solution was 35.5 °C

Determine the temperature change when metal **X** is added to copper sulfate solution.

Use Figure	2 .
------------	------------

35.5	°C
	°C
	°C
	35.5

(b) Give two variables the student should keep the same in this investigation.

1	 	 	
2.			

(c) The student repeated the experiment with metal **Y**.

Table 1 shows four results for metal Y.

Table 1

	Test 1	Test 2	Test 3	Test 4
Temperature change in °C	9.2	7.3	9.5	9.2

Calculate the mean temperature change for metal Y.

Do **not** include the anomalous result in your calculation.

Mean temperature change = _____ °C

(2)

(2)

(2)

The more reactive the metal added to copper sulfate solution, the greater the temperature change.

Figure 3 shows a reactivity series.

(d) The student repeated the experiment.

The student added:

- magnesium to copper sulfate solution
- an unknown metal A to copper sulfate solution.

Table 2 shows the results.

Table 2

Metal	Temperature change in °C
Magnesium	12
Metal A	8

The student concludes metal **A** is zinc.

Give **one** reason why the student is correct.

Use Figure 3 and Table 2.

(e) The student did the experiment with silver and copper sulfate solution.

What happens to the temperature of the mixture?

Use Figure 3.

Tick (\checkmark) one box.

Decreases	
Increases	
Stays the same	

- (f) Suggest **one** reason why the student should **not** add potassium metal to copper sulfate solution.
- (g) 100 cm³ of the copper sulfate solution contains 1.8 g of copper sulfate.

Calculate the mass of copper sulfate in 25 cm³ of this copper sulfate solution.

Mass = _____ g (2)

(Total 11 marks)

(1)

Q3.

This question is about salts and electrolysis.

A student wants to make copper chloride crystals.

The student adds excess copper oxide to some hot acid.

The student stirs the mixture.

(a) Which acid should the student use?

Tick (\checkmark) one box.

Hydrochloric acid	
Nitric acid	
Sulfuric acid	

(b) Suggest how the student would know that excess copper oxide has been added.

(1)

(1)

(c) There are four more stages, A, B, C and D, to make copper chloride crystals.

The stages A, B, C and D are not in the correct order.

- Stage A Partially evaporate by heating with a water bath
- Stage **B** Filter the mixture into an evaporating basin
- Stage **C** Leave to crystallise
- Stage **D** Remove and dry the crystals

Put stages A, B, C and D in the correct order.

- Second stage _____
- Third stage
- Fourth stage

(2)

(d) Molten copper chloride can be electrolysed.

State the product at each electrode when molten copper chloride is electrolysed.

(e) A solution of copper chloride is electrolysed.

The graph below shows the increase in mass of the negative electrode.

This increase is shown over a time of 10 minutes.

Calculate the gradient of the line in the graph.

Use the equation:

(3)

(f) Aluminium is produced by electrolysis of a molten mixture.

Complete the sentence.

Choose the answers from the box.

carbon	chloride	cryolite water	oxide	sulfate
The molten m	ixture contains			and
aluminium		·		

(2) (Total 11 marks)

Q4.

This question is about copper sulfate.

(a) The formula of copper sulfate is CuSO₄

The table below shows information about the atoms in copper sulfate.

Complete the table.

Element	Symbol	Relative number of atoms in CuSO₄
	Cu	
Sulfur		
		4

Copper oxide and sulfuric acid react to produce copper sulfate and water.

(b) Complete the word equation for this reaction.

_____+ _____+ water

(3)

(1)

(1)

(c) What type of substance is copper oxide?

Tick (\checkmark) one box.

A base	
A metal	
A salt	
An acid	

A student planned to make blue copper sulfate crystals.

This is the method the student used.

- 1. Add 25 cm³ of dilute sulfuric acid to a conical flask.
- 2. Gently warm the dilute sulfuric acid.
- 3. Add 2 g of black copper oxide to the dilute sulfuric acid.
- 4. Stir the mixture.
- 5. Evaporate some of the water from the mixture using an electric heater.

6. Leave the mixture to cool.

Not all the copper oxide reacted. The student did not remove the excess copper oxide.

(d) What would the product look like after step 6?

Tick (\checkmark) one box.

Black powder only	
Blue crystals and black powder	
Blue crystals only	
Blue solution only	

(1)

(e) The student should have filtered the mixture after step 4.

Draw a diagram of the apparatus the student could use.

You should label:

- the pieces of equipment used
- where the excess copper oxide collects.

- (f) What equipment should the student use to measure:
 - 2 g of copper oxide
 - 25 cm³ of dilute sulfuric acid?

Draw one line from each measurement to the most suitable piece of equipment.

(2)

(g) 1 g of copper sulfate is dissolved in water to make 25 cm³ of copper sulfate solution.

Calculate the concentration of the copper sulfate solution in g/dm³

Concentration = _____ g/dm³ (2) (Total 13 marks)

Q5.

The following table shows the mass of each ingredient in an indigestion tablet.

Ingredient	Mass in milligrams
Calcium carbonate	522
Magnesium carbonate	68
Sodium hydrogencarbonate	64
Other substances	146

(a) Calculate the mass of the indigestion tablet in grams.

Mass of tablet in milligrams =	
Mass of tablet in grams = $\frac{1}{2}$	

(b) Calcium carbonate in the indigestion tablet reacts with hydrochloric acid in the stomach.

Which gas is produced?

Tick (\checkmark) one box.

Carbon dioxide	
Chlorine	
Hydrogen	
Oxygen	

(2)

(c) Sodium hydrogencarbonate has the chemical formula NaHCO₃

How many different elements are in sodium hydrogencarbonate?

Tick (\checkmark) one box.

3	
4	
5	
6	

(1)

A student investigated the temperature change when different masses of calcium carbonate were reacted with 50 cm³ of hydrochloric acid.

The diagram below shows the apparatus used.

This is the method used.

- 1. Add 50 cm³ of hydrochloric acid to a glass beaker.
- 2. Record the temperature of the hydrochloric acid.
- 3. Add 1 g of calcium carbonate to the hydrochloric acid.
- 4. Stir the mixture.
- 5. Record the highest temperature of the mixture.
- 6. Repeat steps 1–5 with different masses of calcium carbonate.

(d) Which two changes would increase the accuracy of the results?

Tick (\checkmark) **two** boxes.

Add a lid to the top of the glass beaker	
Add indicator to the hydrochloric acid	
Use 100 cm ³ of hydrochloric acid	
Use a polystyrene cup instead of the glass beaker	
Use a thermometer with intervals of 5 $^{\circ}\mathrm{C}$ instead of 1 $^{\circ}\mathrm{C}$	

(2)

(e) The student added different masses of calcium carbonate to the hydrochloric acid.Which two terms describe the mass of calcium carbonate in this investigation?

Tick (\checkmark) **two** boxes.

Categoric variable	
Continuous variable	
Control variable	
Dependent variable	
Independent variable	

(2) (Total 8 marks)

Q6.

The country Iceland is a major producer of aluminium.

Aluminium is extracted from aluminium oxide using electrolysis.

Electrolysis requires a large amount of electricity.

Iceland generates all of its electricity from renewable resources.

(a) Which of the following is a renewable resource?

Tick (\checkmark) one box.

Coal	
Crude oil	
Hydroelectricity	
Nuclear fuel	

(b) Why is aluminium produced in Iceland?

Tick (\checkmark) one box.

Conserves aluminium ore

Plentiful supply of cheap electricity

Uses up non-renewable resources

(c) Aluminium is extracted from aluminium oxide.

Complete the balanced equation for the reaction.

 $2 \text{ Al}_2\text{O}_3 \rightarrow \underline{\qquad} \text{ Al } + \underline{\qquad} \text{O}_2$

(2)

(d) What type of reaction takes place when oxygen is removed from aluminium oxide?

Tick (\checkmark) one box.

Combustion	
Neutralisation	
Reduction	

(1)

(e) During electrolysis, aluminium ions (Al³⁺) move towards the negative electrode.

Explain why aluminium ions move towards the negative electrode.

(2)

(1)

(f)	At the negative electrode, an aluminium ion (Al ³⁺) gains electrons to become an aluminium atom.

How many electrons does each aluminium ion gain?

Number of electrons = _____

(g) The positive electrode is made of carbon.

Oxygen is produced at the positive electrode.

The oxygen reacts with the carbon.

Complete the word equation for the reaction.

Carbon + oxygen \rightarrow _____

(h) Why do the positive electrodes need to be replaced regularly?

(1)

(i) A ceramic material can be used as the positive electrode in the electrolysis of aluminium oxide.

The ceramic material has the following properties:

- high melting point
- unreactive.

Explain why each property is important when the ceramic material is used in the electrolysis of aluminium oxide.

(Total 14 marks)

Q7.

This question is about acids and bases.

(a)	Which ion is found in all acids?	
	Tick one box.	
	CI- H+ Na+ OH-	(1)
(b)	Zinc nitrate can be produced by reacting an acid and a metal oxide.	
	Name the acid and the metal oxide used to produce zinc nitrate.	
	Acid	
	Metal oxide	(0)
(c)	In an equation, zinc nitrate is written as $Zn(NO_3)_2(aq)$.	(2)
(0)	What does (aq) mean?	
	Tick one box.	
	Dissolved in water	
	Insoluble	
	Not all reacted	
	Reactant	
		(1)
(d)	The pH of a solution is 8	
	Some hydrochloric acid is added to the solution.	
	Suggest the pH of the solution after mixing.	

pH = _____ (1)

(e) **Table 1** shows the solubility of three solids in water at room temperature.

Solid	The mass of the solid that dissolves in 100 cm ³ of water
Phosphorus oxide	50 g
Silicon dioxide	0 g
Sodium hydroxide	100 g

Table 1

A teacher labelled these three solids **A**, **B** and **C**.

She gave a student the information shown in Table 2

Solid	Observation when added to water	pH of the solid in water
Α	colourless solution	14
В	colourless solution	2
С	solid does not dissolve	7

Table 2

Describe a method that could be used to identify each of the three solids A, B and C.

You must use an indicator in the method.

Use information in Table 1 and Table 2

(4) (Total 9 marks)

Q8.

This question is about the extraction of aluminium.

(a) An aluminium atom is represented as:

27 13Al

Give the number of electrons and neutrons in the aluminium atom.

Number of electrons ______ Number of neutrons ______

Aluminium is extracted by the electrolysis of a molten mixture of aluminium oxide and cryolite.

The diagram below shows the cell used for the electrolysis.

(b) Aluminium is produced by the reduction of aluminium oxide (Al₂O₃).

What is meant by the term reduction?

(c) Oxygen is formed at the positive carbon electrodes.

Explain why the positive carbon electrodes must be continually replaced.

(d) A substance conducts electricity because of free moving, charged particles.

What are the free moving, charged particles in a:

- carbon electrode (made from graphite)
- molten mixture of aluminium oxide and cryolite
- metal wire?

Carbon electrode (made from graphite) _____

Molten mixture of aluminium oxide and cryolite _____

Metal wire _____

(3) (Total 9 marks)

Q9.

This question is about reactions of metals.

The diagram shows what happens when calcium, copper, magnesium and zinc are added to hydrochloric acid.

(a) What is the order of decreasing reactivity of these four metals?

Name two variables that must be kept constant.

Tick (\checkmark) one box.

(b)

(C)

(1)

A student wants to make a fair comparison of the reactivity of the metals with hydrochloric acid.

(2)

_____(1)

(d)	Predict the reactivity	of beryllium	compared with	magnesium.

Give a reason for your answer.

Use the periodic table.

	Reason		
)	A solution of hydrochloric acid contains 3.2 g of hydrogen chloride in 50 cm ³		
	Calculate the concentration of hydrogen chloride in g per dm ³		
	Concentration =	g per dm³	
		(Total 9 m	a

Q10.

This question is about salts.

Ammonium nitrate solution is produced when ammonia gas reacts with nitric acid.

- (a) Give the state symbol for ammonium nitrate solution.
- (b) What is the formula of nitric acid?

Tick (\checkmark) one box.

(c) Ammonia gas dissolves in water to produce ammonia solution.

Ammonia solution contains hydroxide ions, OH-

A student adds universal indicator to solutions of nitric acid and ammonia.

What colour is observed in each solution?

Colour in nitric acid _____

Colour in ammonia solution _____

(2)

(1)

(d) The student gradually added nitric acid to ammonia solution.

Which row, **A**, **B**, **C** or **D**, shows the change in pH as the nitric acid is added until in excess?

Tick (\checkmark) **one** box.

	pH of ammonia solution at start	pH after addition of excess nitric acid
Α	10	7
В	2	10
С	7	1
D	10	2

(1)

(e) Calculate the percentage by mass of oxygen in ammonium nitrate (NH_4NO_3).

Relative atomic masses (A_r): H = 1 N = 14 O = 16

Relative formula mass (M_r): NH₄NO₃ = 80

Percentage by mass of oxygen = _____%

(3)

(f) Describe a method to investigate how the temperature changes when different masses of ammonium nitrate are dissolved in water.

You do not need to write about safety precautions.

(Total 14 marks)

Q11.

This question is about electrolysis.

A student investigates the mass of copper produced during electrolysis of copper chloride solution.

The diagram below shows the apparatus.

(a) Which gas is produced at the positive electrode (anode)?

Tick **one** box.

(b) Copper is produced at the negative electrode (cathode).

What does this tell you about the reactivity of copper? Tick **one** box.

Copper is less reactive than hydrogen Copper is less reactive than oxygen Copper is more reactive than carbon

Copper is	s more	reactive	than	chlorine

The table below shows the student's results.

	Total mass of copper produced in mg			
Time in mins	Experiment 1 Experiment 2 Experiment 3 Mean			
1	0.60	0.58	0.62	0.60
2	1.17	1.22	1.21	1.20
4	2.40	2.41	2.39	2.40
5	3.02	Х	3.01	3.06

(c) Determine the **mean** mass of copper produced after 3 minutes.

Mass = _____ mg (1)

(d) Calculate the mass X of copper produced in Experiment 2 after 5 minutes.Use the table above.

(e) The copper chloride solution used in the investigation contained 300 grams per dm³ of solid CuCl₂ dissolved in 1 dm³ of water.

The students used 50 cm³ of copper chloride solution in each experiment.

Calculate the mass of solid copper chloride used in each experiment.

Mass =	g
	-
	(3)
	(Total 8 marks)

Q12.

A student plans a method to prepare pure crystals of copper sulfate.

The student's method is:

- 1. Add one spatula of calcium carbonate to dilute hydrochloric acid in a beaker.
- 2. When the fizzing stops, heat the solution with a Bunsen burner until all the liquid is gone.

The method contains several errors and does not produce copper sulfate crystals.

Explain the improvements the student should make to the method so that pure crystals of copper sulfate are produced.

(Total 6 marks)

Q13.

This question is about acids, alkalis and bases.

A student reacted zinc oxide powder with hydrochloric acid to produce zinc chloride solution.

(a) Complete the equation for the reaction by writing the state symbols.

(2)

Sulfuric acid and sodium hydroxide react to produce sodium sulfate.

(f) Sulfuric acid is gradually added to sodium hydroxide solution.

The pH of the mixture changes as the sulfuric acid is added until in excess.

Suggest the pH at:

- the start before sulfuric acid is added
- the end when sulfuric acid is in excess.

pH at start =	
pH at end =	

(g) Complete the symbol equation for the preparation of sodium sulfate.

You should balance the equation.

 $\underline{\qquad} NaOH + H_2SO_4 \rightarrow \underline{\qquad} + \underline{\qquad}$

(h) A solution of hydrochloric acid had a hydrogen ion concentration of 1.0 mol/dm³

Water was added to the hydrochloric acid until the pH increased by 1

What was the hydrogen ion concentration of the hydrochloric acid after water had been added?

Tick (\checkmark) one box.

10 mol/dm³

0.10 mol/dm³

0.010 mol/dm³

(1) (Total 12 marks)

(2)

(2)

Q14.

A student investigated the electrolysis of potassium chloride solution.

The diagram below shows the apparatus used.

(a) Why are inert electrodes used?

The student measured the volume of gas collected at each electrode for 25 minutes.

The graph below shows the results.

(b) Compare the **rate** of collection of hydrogen and of chlorine.

Give one similarity and one difference in the rate of collection of the gases.

Similarity _____

Difference ___

(c) The rate of production of hydrogen and of chlorine at the electrodes is the same.

Explain how the graph on the graph above shows that chlorine is more soluble than hydrogen.

(2)

(2)

Explain why hydrogen gas is produced at the negative electrode in the electrolysis of potassium chloride solution.
Write the half equation for the production of chlorine gas at the positive electrode.
\rightarrow +

(Total 11 marks)

Q15.

A student investigated the temperature change when magnesium was added to copper sulfate solution.

This is the method used.

- 1. Pour 30 cm³ of copper sulfate solution into a polystyrene cup.
- 2. Measure the temperature of copper sulfate solution every minute for 3 minutes.
- 3. Add magnesium on the fourth minute.
- 4. Measure the temperature of the mixture at 5 minutes and then every minute up to 14 minutes.
- (a) What is the dependent variable in this investigation?

The student used the results to plot a graph.

The image below shows the graph.

(b) Suggest why the copper sulfate solution was left for four minutes before adding the magnesium.

•	mplete the graph above by: drawing a line of best fit through all the points after 7 minutes extending the line back to 4 minutes.
	e temperature change for the reaction is the temperature difference between the two ph lines at 4 minutes.
Det	termine the temperature change for the reaction.
Use	e the graph above.
	Temperature change =
Exp	plain why the temperature of the mixture decreases after 7 minutes.
	e student repeated the experiment with an unknown metal Q instead of magnesium.
All	the other variables were kept the same.
The	e student recorded a smaller temperature change.
Su	ggest the identity of metal Q .
Giv	e one reason for your answer.
140	tal Q

(g) A copper sulfate solution contained 0.100 moles of copper sulfate dissolved in 0.500 dm³ of water.

Calculate the mass of copper sulfate in 30.0 cm³ of this solution.

Relative formula mass (M_r): CuSO₄ = 159.5

Mass =	g
	(4)
	(Total 14 marks)

Q16.

This question is about electrolysis.

(a) Some metals are extracted from molten compounds using electrolysis.	(a)	Some metals are extracted from molten compounds using electrolysis.	
---	-----	---	--

Why is electrolysis used to extract some metals?

(1)

(2)

(2)

(b) Aluminium is produced by electrolysis of a molten mixture.

What two substances does the molten mixture contain?

- 1 ______ 2 _____
- (c) Copper and chlorine are produced when molten copper chloride is electrolysed.

Complete the half equation for the reaction at each electrode.

Half equation at negative electrode

Cu²⁺

Half equation at positive electrode

2 Cl[−] →

The **Figure 1** shows the apparatus a student used to electrolyse copper chloride solution.

The student:

- measured the mass of copper deposited on the negative electrode after 60 minutes
- compared the mass deposited with the expected value.

(d) Suggest **two** reasons why the mass deposited was different from the expected value.

(2)

(e) **Figure 2** shows the expected mass of copper produced each minute.

Determine the expected mass of copper after 24 hours.

Use Figure 2.

Silver nitrate solution is electrolysed.

(f) Determine the mass of the negative electrode at the start of the experiment.

Use Figure 3.

(g) Calculate the gradient of the line in **Figure 3**.

Give the unit.

Gradient _____ Unit (3) (Total 14 marks)

(1)

Q17.

This question is about iron.

Iron reacts with dilute hydrochloric acid to produce iron chloride solution and one other product.

(a) Name the other product.

(1)

(b) Suggest how any unreacted iron can be separated from the mixture.

(1)

Magnesium reacts with iron chloride solution.

 $3 \text{ Mg} + 2 \text{ FeCl}_3 \rightarrow 2 \text{ Fe} + 3 \text{ MgCl}_2$

(c) 0.120 g of magnesium reacts with excess iron chloride solution.

Relative atomic masses (A_r): Mg = 24 Fe = 56

Calculate the mass of iron produced, in mg

Mass of iron = _____ mg

(d) Explain which species is reduced in the reaction between magnesium and iron chloride.

 $3 \text{ Mg} + 2 \text{ FeCl}_3 \rightarrow 2 \text{ Fe} + 3 \text{ MgCl}_2$

Your answer should include the half equation for the reduction.

(3) (Total 10 marks)

Q18.

A scientist does two tests on four white solids. The solids are labelled A, B, C and D.

Test 1 Adds the sample of the solid to distilled water and stirs.

Test 2 Measures the pH of the solution after Test 1

Table 1 shows the results.

Table 1

Solid	Appearance after stirring	рН
Α	colourless solution, no solid	
В	colourless solution, no solid	3
С	colourless solution, solid remains	9
D	colourless liquid, solid remains	7

These four solids are:

- magnesium oxide
- phosphorus oxide
- silicon dioxide
- sodium oxide.

 Table 2 shows the solubility of these four solids in water.

Table 2

Solid	Solubility in grams per 100 cm³ of water
Magnesium oxide	0.01
Phosphorus oxide	52
Silicon dioxide	0
Sodium oxide	109

Identify the solids A , B , C and D .
Explain your answers.

(6)

(b) 10 cm^3 of solution **B** is added to a beaker.

Distilled water is added to the beaker until the final volume in the beaker is 1000 cm³

The pH of the solution is measured before and after distilled water is added.

Table 3 shows the results.

Table 3

Volume of solution in beaker	pH of solution B
10 cm ³	3
1000 cm ³	X

Calculate the value of **X**.

X = _____

(2) (Total 8 marks)

Mark schemes

Q1.

(a)	1	
		1
(b)	hydrochloric acid	1
(c)	salt	1
(d)	sodium hydroxide	1
(e)	CuO	1
(f)	 any one from: increase the concentration of the acid increase the surface area of the copper oxide allow use powdered copper oxide warm / heat the mixture ignore increase room temperature allow add catalyst ignore stir 	1
(g)	in excess	1
(h)		1
		T

(i) crystallisation

allow evaporation

1

[9]

Q2.

(a)	21.1 (°C)	1
	14.4 (°C) allow correct use of an incorrect start temperature	1
(b)	any two from:	
	 surface area of metal 25 cm³ / volume of copper sulfate solution concentration of copper sulfate solution mass / 1 g of metal <i>ignore amount ignore temperature ignore stirring</i> 	2
(c)		
	$\frac{9.2+9.5+9.2}{3}$ or $\frac{27.9}{3}$	1
	= 9.3 (°C) if no other mark awarded allow 1 mark for 8.8 (°C)	1
(d)	(metal A / zinc) is less reactive (than magnesium) or	
	(metal A / zinc) is lower in reactivity series or	
	change in temperature is lower (with metal A / zinc) allow converse	1
(e)	stays the same	
(f)	too dangerous or too reactive	1
	allow potassium would react with water	1
(g)	$\frac{25}{100} \times 1.8$ or $\frac{1}{4} \times 1.8$	1
	= 0.45 (g)	1 [11]

Q3.

(a)	hydrochloric ac	id	1
(b)	allo	mains (after stirring) ww copper oxide remains ww no more copper oxide reacts	1
(c)			
	first stage	В	
	second stage	A	
	third stage	C	
	fourth stage	D	
		4 correct for 2 marks	
	allo	w 1 mark if either first stage or fourth stage is correct	2
(d)	(negative electr	rode) copper	
()		ow Cu	
	allo	w Cl ₂ / Cl	1
		not accept chloride or Cl-	
	if n	o other mark awarded allow 1 mark if elements are reversed	1
(e)	a reading of an	increase in mass	
	correct linked r	eading of the increase in time	
		. 4 (mg) in 10 (mins) scores 2 marks	
			1 1
	correct evaluati	ion of gradient	
		$\frac{4}{10} = 0.4 \text{ (mg per min)}$	
	-	(10 =) 0.4 (mg per mm) we correct calculation of gradient from incorrectly determined	
		ues for mass and/or time	1
(0)			1
(f)	cryolite	s order only	
	1113		1
	oxide		
			1 [11]
			[,,]

Q4.

(a

(a)				_	
	copper	Cu	1		
	sulfur	S	1		
	oxygen	0	4		
	I	lf no rows coi	rrect, allow 1	mark for a correct column	
(b)		e + sulfuric ac allow correct		sulfate (+ water)	
(c)	a base				
(d)	blue crystals	and black po	owder		
(e)	(filter) funnel	and (filter) p	aper labelled	b	
		sk / beaker la allow any suit		er labelled	
		e (residue) la allow excess	belled		
(f)					
(g)		sulfuric acid	m measurem	nce	
	$1 \times \frac{1\ 000}{25}$	an answer of		scores 1 mark	
				rom an incorrect attempt at a	

[13]

Q5.

(a)

()	an answer of 0.8 (g) scores 2 marks		
	(mass in mg =) 800	1	
	(mass in g =) 0.8 allow correct unit conversion using incorrectly calculated mass in milligrams	1	
(b)	carbon dioxide	1	
(c)	4	1	
(d)	add a lid to the top of the glass beaker	1	
	use a polystyrene cup instead of the glass beaker	1	
(e)	continuous variable	1	
	independent variable	1	[8]
			-

Q6.

(a)	hydroelectricity	1
(b)	plentiful supply of cheap electricity	1
(c)	an answer of $2 Al_2O_3 \rightarrow 4 Al + 3 O_2$ scores 2 marks	
	4(AI)	1
	3(O ₂)	1
(d)	reduction	1
(e)	(Al ³⁺ ions are) positive do not accept aluminium atoms are positive, but 2 nd marking point can still be scored	1
	(so) are attracted (to the negative electrode) allow (so) opposite charges attract	1
(f)	3 / three	1
(g)	carbon dioxide allow CO ₂ allow carbon monoxide or CO ignore carbon oxide	1
(h)	electrode / carbon / graphite reacts to produce a gas allow electrode / carbon / graphite is used up ignore wears away ignore corrodes / rusts	1
(i)	(high melting point)	
	(so) will not melt	1
	in the high temperatures (in the electrolytic cell) ignore the electrolytic cell is very hot	1
	(unreactive)	
	(so) will not react	1
	with oxygen	

or

with aluminium oxide ignore with aluminium

1 [14]

Q7.

(a)	H+	1
(b)	nitric (acid) or HNO ₃	1
	zinc (oxide) or ZnO	1
	this order only	-
(c)	dissolved in water	1
(d)	any value from 0 to less than 8	1
(e)	Level 2: The method would lead to the production of a valid outcome. Key steps are identified and logically sequenced.	3-4
	Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1-2
	No relevant content	0
	Indicative content	
	add universal indicator or wide range indicator	
	indicator turns blue / purple / violet (because pH = 14) or has highest pH or is an alkali so A is sodium hydroxide	
	indicator turns red (because pH = 2) or has lowest pH or is an acid so B is phosphorus oxide	
	indicator turns green (because pH = 7)	
	or neutral so C is silicon dioxide	

[9]

so C is silicon dioxide

Q8.

(a)

13	1
	1
14	
(b) loss of oxygen allow (Al ³⁺) gain of electrons allow aluminium oxide loses oxygen	1
(c) allow anode for (positive) electrode	1
(at high temperature) oxygen reacts with carbon / electrode	1
(so the positive) electrode burns / wears away	1
to produce carbon dioxide $C + O_2 \rightarrow CO_2$ scores MP1 and MP3	1
(d) (delocalised) electron(s)	1
ion(s)	1
(delocalised) electron(s)	1 [9]

Q9.

- (a) Ca Mg Zn Cu
- (b) any **two** from:
 - mass (of metal / element)
 allow weight
 - surface area (of metal / element) ignore size ignore length
 - concentration (of acid)
 ignore pH
 ignore strength
 - volume (of acid)
 - temperature (of acid)
 ignore room temperature
- (c) (type of) metal / element
- (d) (beryllium is) less reactive

any **one** from:

• greater attraction between nucleus and outer electrons

1

2

1

1

1

1

1

1

- more energy is needed to remove electrons
- loss of electrons is more difficult
- outer electrons closer to nucleus
- less shielding
 - allow converse answers for magnesium MP2 only if MP1 is correct allow higher in <u>group</u> allow reactivity increases down the <u>group</u> ignore reactivity series

$$= 0.05 (dm^3)$$

$$\left(\frac{3.2}{0.05}\right)$$
 64 (g per dm³)

3.2 50 (1)

= 0.064 (1)

 $(x 1000) = 64 (g per dm^3) (1)$

alternative approach:

 $\frac{1000}{50}$ (1)

= 20 (1)

 $(x 3.2) = 64 (g per dm^3) (1)$

an answer of 64 (g per dm³) scores **3** marks an incorrect answer for one step does **not** prevent allocation of marks for subsequent steps an answer of $0.16 / 0.064 / 0.64 / 6.4 / 6.4 \times 10^{-5}$ (g per dm3) gains **2** marks

Q10.

(a)	(aq)	allow aq ignore aqueous ignore formulae	1
(b)	HNO ₃		1
(c)	red	allow orange or yellow do not accept green	1
	purple or blue	allow shades of purple e.g. violet	1
(d)	D		
(e)	3 × 16 or 4	8	1
	48 80 (×100)		1
	60 (%)		1
		an answer of 60 (%) scores 3 marks an answer of 20 (%) scores 2 marks for: 16 80 (× 100) (1) = 20 (%) (1)	1
(f)		he design/plan would lead to the production of a valid outcome. All key dentified and logically sequenced.	5-6
		he design/plan would not necessarily lead to a valid outcome. Most steps ed, but the plan is not fully logically sequenced.	3-4
		he design/plan would not lead to a valid outcome. Some relevant steps ed, but links are not made clear.	1-2
	No releva	nt content	0
	Indicative	content	
	Steps		

• use a suitable container e.g. test tube

- use insulation
- add water
- measure the initial water temperature (with a thermometer)
- add stated mass e.g. 1g or 1 spatula
- stir (to dissolve the solid)
- measure the final (allow lowest or highest) temperature of the solution
- calculate the temperature difference **or** determine graphically
- repeat with different masses
- repeat with the same volume of water

to access level 3 there must be an indication of how the temperature change is determined using different masses dissolved in the same quantity of water

Q11.

(a)	chlorine	
		1
(b)	copper is less reactive than hydrogen	1
(c)	1.8 (mg) allow an answer in range 1.7–1.9	1
(d)	$\frac{3.02 + 3.01 + x}{3} = 3.06$	
(4)	allow any other suitable method	1
	3.15 (mg)	
	if no other mark awarded allow 9.18 for 1 mark	1
	an answer of 3.15 (mg) scores 2 marks	
(e)	$\frac{50}{1000}$ or $\frac{1}{20}$ or 0.05	1
	(0.05) × 300	
	the second mark is dependent on the first mark being	
	scored	1
	15 (g)	1
	or	
	$\frac{300}{1000}$ or $\frac{3}{10}$ or 0.03 (1)	
	(0.3) × 50 (1) the second mark is dependent on the first mark being scored	

15 (g) (1)

if no other mark awarded allow 150 **or** 15 000 for **1** mark

[8]

Q12.

Level 3: Relevant points (reasons / causes) are identified, given in detail and logically linked to form a clear account.		
	5-6	
Level 2: Relevant points (reasons / causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.	3-4	
Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.	1-2	
No relevant content	0	
Indicative content		
 uses sulfuric acid not hydrochloric acid or sulfuric acid needed 		
 uses copper carbonate / oxide not calcium carbonate or copper carbonate / oxide needed 		
 add solid until solid remains or is in excess or no more reacts / dissolves so that most / all of the acid reacts 		
 filter to remove excess or unreacted carbonate / oxide / solid 		
 heat gently or partially evaporate or leave until crystals appear or to crystallise 		
for level 3 the correct chemicals must have been selected		

Q13. (a)	ZnO (s) + HCI (aq) \rightarrow ZnCl ₂ (aq) + H ₂ O (I) allow 1 mark for 2/3 correct state symbols		
	allow I mark for 2/3 correct state symbols	2	
(b)	 any one from: warm / heat the mixture increase the concentration of the (hydrochloric) acid ignore add a catalyst ignore stir ignore powder ignore add more zinc oxide do not accept volume / amount of (hydrochloric) acid do not accept increase the surface area 	1	
(c)	zinc oxide remains or solid remains <i>ignore colour</i> <i>allow zinc oxide is added until in excess</i>	1	
(d)	filtration / filter	1	
(e)	heat do not accept heat to dryness	1	
	leave to crystallise / cool allow leave to evaporate some water	1	
(f)	(at start) value in range 12–14 must be in this order	1	
	(at end) value in range 0–3	1	
(g)	2 NaOH + H ₂ SO ₄ \rightarrow Na ₂ SO ₄ + 2 H ₂ O allow 1 mark for Na ₂ SO ₄ and H ₂ O	2	
(h)	0.10 mol/dm ³	1	[12]

Q14.

(a)	so the electrodes do not react (with electrolyte / gas / chlorine / hydrogen)	1	
(b)	 similarity any one from: both collected at a constant rate from 10 to 25 minutes hydrogen is collected at the same rate as chlorine from 10 minutes. 	1	
	 difference any one from: rate of collection for hydrogen is greater than chlorine for the first 10 minutes overall rate of collection of hydrogen is greater than chlorine rate of collection of hydrogen is constant from 0 to 10 minutes but chlorine varies. 	1	
(c)	less chlorine is collected	1	
	(because) most chlorine produced at the start of the reaction dissolves in the water	1	
(d)	water molecules break down to produce hydrogen ions (and hydroxide ions)	1	
	hydrogen ions are discharged as potassium is more reactive than hydrogen	1	
	(so) hydrogen ions gain electrons allow (so) hydrogen ions are reduced	1	
	to form a hydrogen molecule ignore to form a hydrogen atom	1	
(e)	$2CI^{-} \rightarrow CI_2 + 2e^{-}$ allow 1 mark for CI^{-} (on the left) and CI_2 (on the right)	2	[11]

Q15.

(a)	temperature (change)	1
(b)	to reach a constant temperature allow to reach room temperature	1
(c)	line of best fit after 7 minutes	1
	extends line back to 4 minutes ignore extension of line beyond 4 minutes	1

the diagram below scores 2 marks

(d) (maximum and minimum values at 4 minutes) 26.3 (°C) and 17.5 (°C) *allow ecf from (c)*

> (temperature change at 4 minutes) = 8.8 (°C)

(e) the reaction finished / stopped

1

1

		[14]
	= 0.957 (g) allow 0.96 (g)	1
		1
	allow correct use of incorrect value for number of moles	
	mass = 0.006 × 159.5	
	$(moles = 0.50 \times 0.1 =) 0.006$	1
	or 0.030	
	allow correct use of incorrect / no unit conversion	
	(moles = $\frac{500}{500}$ × 0.1 =) 0.006	
	30	-
	$0.500 \text{ dm}^3 = 500 \text{ cm}^3$	1
(3)	$30.0 \text{ cm}^3 = 0.030 \text{ dm}^3$	
(g)	(unit conversion)	÷
	allow converse	1
	or metal Q is lower in reactivity series	
	metal Q is less reactive (than magnesium)	
	MP2 dependent on a correct answer to MP1	1
	do not accept copper, silver	
(f)	aluminium / zinc / iron / beryllium allow Al / Zn / Fe / Be	
	allow heat for energy	1
	(so the) solution cools (back to room temperature)	
	(so) energy is lost to surroundings / atmosphere or	
	allow maximum temperature has been reached	1

Q16.

(a)	metal is too reactive to be extracted using carbon	
	or metal reacts with carbon	
	allow metal is more reactive than carbon	
		1
(b)	aluminium oxide	
	ignore bauxite or aluminium ore	1
	cryolite	
		1
	either order	
(c)	allow multiples	
	negative electrode: $Cu^{2+} + 2e^{-} \rightarrow Cu$	
		1
	positive electrode:	
	$2 \operatorname{Cl}^{-} \to \operatorname{Cl}_{2} + 2e^{-}$ allow 2 CF - 2e ⁻ \to Cl ₂	
		1
(d)	any two from:	
	concentration / volume of solution was different	
	impurities in solution	
	error in timing	
	copper falls off (electrode)	
	allow copper at bottom of beaker	
	copper removed when drying electrode	
	electrode not dry (when weighed)	
	voltage / current was different	
	ignore power supply ignore recorded mass inaccurately	2
(e)		
(6)	an incorrect answer for one step does not prevent allocation of marks for subsequent steps	
	reading of mass at stated time	
	1	
	allow tolerance of $\pm \overline{2}$ small square	
	eg at 30 minutes value is 5.4 (mg)	1

	al	$g 5.4 \times 48 \ (= \frac{24 \text{ hours}}{30 \text{ minutes}})$ Now correct calculation using incorrectly read value for mass at me quoted	1	
	correct evalua eୁ	ation g = 259 (mg)	1	
	alternative a	pproach:		
	calculates the	e gradient (1) g (1.8 ÷ 10) = 0.18		
	କ୍ର ତା କରୁ	ne in minutes in 24 hours (1) g 0.18 × 24 × 60 r g 0.18 × 1440 llow correct use of incorrectly determined gradient		
	correct evalua ec	ation (1) g = 259 (mg)		
(f)	4.75 (g) al	llow values in range 4.7 – 4.8 (g)	1	
(g)		n answer in the range 0.18–0.25 scores 2 marks 3 marks with correct unit)		
		nd X increase measured from graph <i>llow ecf from part (f)</i>		
		ion into $\frac{Y \text{ increase}}{X \text{ increase}}$ $g = \frac{2.0}{10}$		
	σ	y = 10	1	
	correct evalua eୁ	ation $g = 0.2$	1	
	(units) g/hour al	llow g/h or g/hr or g per hour	1	[14]

Q17.

- (a) hydrogen or H₂
 allow hydrogen gas ignore H without the 2 subscript
- (b) filtration / filter allow magnet or decant ignore heating 1 (Mg) $\frac{0.12}{24}$ or 0.005 (moles) (c) mark is for ÷ by 24 1 (Fe) $\frac{2}{3} \times 0.005 = 0.00333 \times 56$ mark is for $\times \frac{2}{3}$ 1 (mass Fe) = 0.00333 × 56 mark is for x 56 1 = 0.1866 (g)1 = 187 (mg)1 an answer of 280 (mg) scores 4 marks an answer of 0.280 scores 3 marks (no ratio from equation) 184 scores **0** [= (3 × 24) + (2 × 56)]

1

OR

$$(Mg) = \frac{0.12}{(3 \times 24 =)72} (1)$$

= 0.00166 or $\frac{1}{600}$ (moles) (1)

(mass of Fe) = 0.00166

or
$$\frac{1}{600} \times 112(2 \times 56)$$
 (1)

= 0.1866 (g) (1)

187 (mg) (1)

OR

72 g Mg \rightarrow 112g Fe (1)

	1 g Mg → $\frac{112}{72}$ or 1.56 g Fe (1) 0.12 g Mg → $\frac{112}{72}$ × 0.12 (1)	
	= 0.1866 (g) (1)	
	= 187 (mg) (1) an answer of 185–190 (mg) scores 5 marks an answer of 0.185–0.19 scores 4 marks	
(d)	Fe ³⁺	1
	(because) reduction is gain <u>of electrons</u> allow change in oxidation state / (+)3 to 0	1
	$Fe^{3+} + 3e^{(-)} \longrightarrow Fe$	1 [10]

- Q18.
 - (a) **Level 3:** Relevant points (reasons / causes) are identified, given in detail and logically linked to form a clear account.

Level 2: Relevant points (reasons / causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.

Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.

Indicative content

A is sodium oxide B is phosphorus oxide C is magnesium oxide D is silicon dioxide

linked statements:

A is sodium oxide because it has highest pH or pH = 14 or is a strong alkali

B is phosphorus oxide because it has lowest pH or pH = 3 or is an acid

C is magnesium oxide because it has 2nd highest pH **or** pH = 9 **or** is a (weak) alkali

D is silicon dioxide because it is neutral **or** pH = 7

or

A and B are sodium oxide **or** phosphorus oxide because both soluble **or** no solid remains

C is magnesium oxide because it will be the colourless <u>solution</u> with solid remaining

D is silicon dioxide because it will be the colourless liquid with solid remaining

for level 3 the solids must be correctly identified

(b) dilution by a factor of 100

allow pH changes by 1 when solution is diluted by factor of 10 **or** allow pH changes by 2

(pH =) 5

an answer of (pH=) 5 gains 2 marks

1

1

5-6

3 - 4

1-2